Azure Python FunctioApp for resume parsing

Jon Ujkani
5 min readMay 17, 2021

--

As the NLP technology and available python packages develop and mature, some interesting use case are now possible.

Consider the job market nowadays where candidates and their resumes are not being read by humans anymore but by Applicant Tracking Systems and algorithms that try and pick on terms used in job description vs ones in the resumes.

Many job applicants struggle to find what is really useful to make their resume relevant for their chosen job application.

The following is a technical article and as such it simply showcases some of the available NLP packages and some deployment patterns. The actual topic is large in nature and if we were to solve it we would need more time coding and more importantly training models using thousands of jobs and resumes.

Use cases covered:

  • Azure FunctionApp
  • Basic NLP functions using NLTK and Spacy

Functions implemented:

  • Resume Parse
  • Job Parse
  • Resume <-> Job match score
  • Get Resume synonyms from Job Keywords

Before getting any further:

  • GitLab repo here
  • Python 3.7x (with all packages defined in requirements.txt installed)
  • Azure-CLI
  • VS Code
  • VS Code extensions: Python, Azure Account, Azure Functions, Optional: (Azure Resources, Azure Storage)
  • Make sure the python .venv existst. If not: python -m venv .venv
  • An Azure account is required

Nice to have in your install:

  • Postman
  • Azure Storage Explorer

Initial Setup:

  • We need to:
  1. provision an Azure storage account
  2. Create an Azure Function App
  3. Create an Azure Share
  4. Create a directory under that share to copy NLTK data
  5. Add that Azure Share to the Azure Function App
  • Here is how all of the above
  • Now create an local empty directory and from a terminal window type:

func project python -m venv .venv func init NLPFunctionProject — python

  • Now let’s create the first function from the command line:

func new — name NLPParseResume — template “HTTP trigger” — authlevel “anonymous” func new — name shared_code — template “HTTP trigger” — authlevel “anonymous” mkdir tests

As you may have noticed, our function will be triggered through an HTTP call. Azure supports many other forms of triggering a function call

Now we are ready to start coding.

The configuration point for a function is the function.json file. It also specifies which .py file is the entry point to the function.

  • Let’s change the scriptFile entry under function.json to

“scriptFile”: “init_pareseres.py”,

  • Now create a init_parseres.py file under the NLPParseResume folder and paste the following code:

#region Imports

from shared_code import commonHelper
import base64
import azure.functions as func
import os
import re
#from typing import Optional
import numpy

import json
import nltk

#from pathlib import Path

from sentry_sdk.integrations.serverless import serverless_function

#endregion Imports

#region Vars

inputSchema = {
“type”: “object”,
“properties”: {
“resume”: {“type”: “string”}
},
“required”: [
“resume”
]
}

#endregion Vars

#region Custom Methods

#method to extract person names from text using nltk tokenizer and person label
def extract_names(input_text):
try:
person_names = []

for sent in nltk.sent_tokenize(input_text):
for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
if hasattr(chunk, ‘label’) and chunk.label() == ‘PERSON’:
person_names.append(
‘ ‘.join(chunk_leave[0] for chunk_leave in chunk.leaves())
)

return person_names

except Exception as e:
commonHelper.logging.error(str(e))
commonHelper.capture_exception(str(e))
return person_names
pass

#method to extract phone NOs using regex
def extract_phone_number(input_text):
try:
PHONE_REG = re.compile(“.*?(\(?\d{3}\D{0,3}\d{3}\D{0,3}\d{4}).*?”, re.S)
phones = re.findall(PHONE_REG, input_text)
retPhones = []
if phones:
for num in phones:
phoneNo = ‘’.join(num)
if input_text.find(phoneNo) >= 0 and len(phoneNo) < 16:
retPhones.append(phoneNo)

return retPhones

except Exception as e:
commonHelper.logging.error(str(e))
commonHelper.capture_exception(str(e))
return retPhones
pass

#method to extract emails using regex
def extract_emails(input_text):
EMAIL_REG = re.compile(r’[a-z0–9\.\-+_]+@[a-z0–9\.\-+_]+\.[a-z]+’)
return re.findall(EMAIL_REG, input_text)

#method to find skills offline
def extract_skills_offline(input_text):
try:

#return ‘’.join(os.listdir(path=’/nlp’))

SKILLS_DB = [‘architect’,’visual studio’,’sql server’,’Oracle’,’gis’,’machine learning’,’data science’,’python’,’word’,’excel’,’English’,’risk manage’, ‘Knowledge Management’, ‘Reporting’, ‘Risk management’, ‘IT Governance’]
found_skills = set()

stop_words = set(nltk.corpus.stopwords.words(‘english’))
word_tokens = nltk.tokenize.word_tokenize(input_text)

# remove the stop words
filtered_tokens = [w for w in word_tokens if w not in stop_words]

# remove the punctuation
filtered_tokens = [w for w in word_tokens if w.isalpha()]

# generate bigrams and trigrams (such as artificial intelligence)
bigrams_trigrams = list(map(‘ ‘.join, nltk.everygrams(filtered_tokens, 2, 3)))

# we search for each token in our skills database
for token in filtered_tokens:
if token.lower() in SKILLS_DB:
found_skills.add(token)

# we search for each bigram and trigram in our skills database
for ngram in bigrams_trigrams:
if ngram.lower() in SKILLS_DB:
found_skills.add(ngram)

return found_skills

except Exception as e:
commonHelper.logging.error(str(e))
commonHelper.capture_exception(str(e))
return found_skills
pass

#Method to extract education using nltk tokenizer and labeling
def extract_education(input_text):
try:
RESERVED_WORDS = [
‘school’,
‘college’,
‘univers’,
‘academy’,
‘faculty’,
‘institute’,
‘schule’
]
education = set()

organizations = []

# first get all the organization names using nltk
for sent in nltk.sent_tokenize(input_text):
for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
if hasattr(chunk, ‘label’) and chunk.label() == ‘ORGANIZATION’:
organizations.append(‘ ‘.join(c[0] for c in chunk.leaves()))

# we search for each bigram and trigram for reserved words
# (college, university etc…)
for org in organizations:
for word in RESERVED_WORDS:
if org.lower().find(word) >= 0:
education.add(org)

return education

except Exception as e:
commonHelper.logging.error(str(e))
commonHelper.capture_exception(str(e))
return education
pass
#endregion Custom Methods
# main entry point
@serverless_function
def main(req: func.HttpRequest) -> func.HttpResponse:

try:

msg = ‘Function ‘ + os.environ[“AZURE_FUNCTIONS_ENVIRONMENT”].lower() + ‘parseres initiated’
commonHelper.capture_message(msg)
commonHelper.logging.info(msg)

# When in Dev environment it is assumed you have downloaded nltk or other models, data etc that your nlp packages need
# Otherwise we assume this data is stored in azure storage and made available to the function app through a share
if os.environ[“AZURE_FUNCTIONS_ENVIRONMENT”] != “Development”:
nltk.data.path.clear()
nltk.data.path.append(os.environ[“NLTK_PATH”])

# Input validation
try:
req_body = req.get_json()
except ValueError:
res = json.dumps({‘error’: ‘Wrong input. Expecting schema: ‘ + ‘’.join(json.dumps(inputSchema))})
commonHelper.logging.error(res)
commonHelper.capture_message(res)
return func.HttpResponse(res, status_code=400)
else:
isValid = commonHelper.validateJson(req_body, inputSchema)
if not isValid:
res = json.dumps({‘error’: ‘Wrong input. Expecting schema: ‘ + ‘’.join(json.dumps(inputSchema))})
commonHelper.logging.error(res)
commonHelper.capture_message(res)
return func.HttpResponse(res, status_code=400)

resumeBase64 = req_body.get(‘resume’)

if not commonHelper.isBase64(resumeBase64):
#Will assume it’s text then
resumeText = resumeBase64
#res = json.dumps({‘error’: ‘Expecting base64 encoding’})
#commonHelper.logging.error(res)
#commonHelper.capture_message(res)
#return func.HttpResponse(res, status_code=400)

else:
resumeText = str(base64.b64decode(resumeBase64), “utf-8”)

phone_numbers = extract_phone_number(resumeText)
emails = extract_emails(resumeText)
skills = extract_skills_offline(resumeText)
names = extract_names(resumeText)
educations = extract_education(resumeText)

if not phone_numbers:
phone_numbers = []
if not names:
names = []
if not emails:
emails = []
if not skills:
skills = []
if not educations:
educations = []

contacts = {‘names’: names, ‘phones’: phone_numbers, ‘emails’: emails}

res = json.dumps({‘message’: {‘contacts’: contacts, ‘skills’: “ “.join(skills), ‘educations’: “ “.join(educations)}})
return func.HttpResponse(res, status_code=200)

except Exception as e:
commonHelper.logging.error(str(e))
commonHelper.capture_exception(str(e))
return func.HttpResponse(json.dumps({‘error1’: str(e)}), status_code=500)

To complete the code, let’s add a shared code component called commonHelper

  • Create a folder called shared_code under your project root directory
  • Create a function.json file and copy paste from function.json above and make sure “scriptFile”: “init_shared.py”
  • Create a new init_shared.py file and paste the following:

import logging

import azure.functions as func

def main(req: func.HttpRequest) -> func.HttpResponse:
logging.info(‘Python HTTP trigger function processed a request.’)

name = req.params.get(‘name’)
if not name:
try:
req_body = req.get_json()
except ValueError:
pass
else:
name = req_body.get(‘name’)

if name:
return func.HttpResponse(f”Hello, {name}. This HTTP triggered function executed successfully.”)
else:
return func.HttpResponse(
“This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response.”,
status_code=200
)

So above sample code uses some pre-trained models to detect persons and skills from a resume text.

You can now try the app locally and use a client like Postman to invoke a call.

--

--

Jon Ujkani
Jon Ujkani

Written by Jon Ujkani

Solution Architect & Technology Enthusiast

No responses yet